Stand-off Detection of Trace Explosives by Infrared Photothermal Imaging

Chris Kendziora, Robert Furstenberg, Michael Papantonakis, Jennifer Stepnowski, Viet Nguyen and R. Andrew McGill

US Naval Research Laboratory
Materials and Sensors Branch, Code 6365
Washington, DC 20375

Trace Contamination

- For manufacture there are Mil Spec explosives particulate sizes
- Munitions or IED surfaces are contaminated with trace particulate explosives.
- Fingerprints from C4 particles generate particle size range
 - @ 20 micron original size of particle
 - @ 4 µgrams in 1st print
 - @ 0.4 µgrams in 10th print

Understand the source
Explosives & Spectral Characteristics

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>C-NO$_2$</td>
</tr>
<tr>
<td>RDX</td>
<td>C-N-NO$_2$</td>
</tr>
<tr>
<td>HMX</td>
<td>C-N-NO$_2$</td>
</tr>
<tr>
<td>TETRYL</td>
<td>C-N-NO$_2$</td>
</tr>
<tr>
<td>PETN</td>
<td>C-O-NO$_2$</td>
</tr>
<tr>
<td>NG</td>
<td>C-NO$_2$</td>
</tr>
<tr>
<td>EGDN</td>
<td>C-O-NO$_2$</td>
</tr>
<tr>
<td>Am. Nitrate</td>
<td>NH$_4$NO$_3$</td>
</tr>
<tr>
<td>Urea Nitrate</td>
<td>CH$_5$N$_2$O, NO$_3$</td>
</tr>
</tbody>
</table>

- Example Infrared Absorption Bands:
 - Covalent nitrate: 6.1-6.6 μm
 - Ionic nitrate: 7.0-7.5 μm

6.25 microns targets the common explosives
(Common materials have low absorption in this region)

- Low transmission at absorption bands
- Several absorption bands are common to these explosive materials
- 6.25 μm targets common explosives
 - N-O asymmetric stretch
 - Common materials exhibit low absorption in this region
- Fortuitous transmission window at 6.25 μm
 - Offers stand-off interrogation

Remote Explosive Detector (RED) Concept

- IR lasers can be used to resonantly couple energy to explosives, drugs, or other chemicals
- Eye-safe, stealth detection
- Thermal radiation can be collected and analyzed at stand-off distances

Quantum Cascade Laser

- Microfabricated laser
 - foundry fabrication in quantity → inexpensive devices
 - Compact IR source
- Single wavelength output
 - targets specific functional groups
- Room temperature operation
- Up to 1 Watt CW output
- Commercially available
 - We buy C-mounted QCL from AdTech Optics
 - We buy turn-key QCL from Daylight Solutions, Inc.

Quantum Cascade Laser (QCL)

- 2 cm
- 6.25 µm
NRL (FLIR) Thermal Imager

- **FLIR (Indigo) Photon Block II**
 - Un-cooled bolometer array
 - 320 X 240 pixels (38 µm)
 - Analog and digital output
 - B&W or false color images
 - Movies here with 50 mm IR lens
 - NETD (noise equivalent temperature) @85 mK
 - Filter limits coverage to 7-12 microns (2-12 nominal)
 - “OEM” platform – already fielded for applications
 - Small, light, relatively low power
 - 30 frames/sec (33 mS between frames)
 - Intrinsically limited response time (slow cooling)

Remote Explosives Detection (RED) Testbed

- Dedicated Testbed
- 4’ X 8’ table
- Co-aligned lasers
- Co-linear incident and detection paths
- Digital software interface array readout
- Environmental chamber (not shown in photo)
Differential Imaging

1. Pulse or chop laser at video frame rate
2. Compare “Laser On” vs. “Laser Off” frames
3. Overlay differential with visible image

Could repeat with on/off resonance or other laser wavelengths to increase sensitivity and selectivity.

Analyte Selectivity for Dual Analyte Sample (RDX & TNT)

Sample illuminated by a heatgun: no laser

Differential images of QCL-heated samples:

- **ν₁ = 1635 cm⁻¹**: Off-resonance
- **ν₂ = 1618 cm⁻¹**: TNT resonance
- **ν₃ = 1600 cm⁻¹**: RDX & TNT
- **ν₄ = 1585 cm⁻¹**: RDX resonance

NOTE: Red circles indicate the laser spot size.
Standoff Detection of TNT

- 1 meter standoff (not limited to this distance)
- 20 mW, λ=6.25 micron, 10 mm diameter QCL beam
- ΔT is \sim 1 °C for bright grain seen in both images.
- Individual particles @ 10-100 microns (0.8 – 800 ng)

![TNT grains in thermal and laser differential images](image)

Cart-based System Design

For Field Testing

- “Cart-mounted” components:
 1. QCL module (4 lasers)
 2. Collection optics (lenses and mirrors)
 3. Steering gimbal
 4. Co-focused:
 - IR detector
 - visible camera
 5. Computer based:
 - System control software
 - Signal processing/alarm algorithm

![Cart-mounted system diagram](image)
Optical Layout

- Modular design
- Co-aligned:
 - QCL excitation
 - IR detection
 - Visible alignment
- 12 mm collimated beam for long standoff
- IR and visible imaging systems are co-focused
- Approved eye-safe for use around people by Navy Laser Safety Review Board

QCL Module Layout

RED QCL Module
- 5.2 µm (~30 mW) “off resonance 1”
- 6.25 µm (~30 mW) “on resonance 1”
- 7.41 µm (~30 mW) “on resonance 2”
- 658 nm –alignment laser (~ 1 mW)
- Co-linear, 12 mm collimated
- Pick-off beam for output power normalization
- Operate independent of temperature
RED Cart Software Interface

- Written in-house for this specific application
- Microsoft Visual Studio C Sharp
- Synchronizes experiment
- Monitors output
- Graphic display
- Analyzes data

Experimental Sequence and Signal Processing
1. Control/synchronize QCL pulsing sequence
2. Correlate detector signal with output λ
3. Turn a series of signals into a differential
4. Then into an on/off resonance comparison
5. Three wavelengths for enhanced selectivity
6. Process into an alarm signal

ALARM!

Signal 1 | Signal 2 | Signal 3 | Signal 4

Pulse Visible | Pulse 7.4 QCL | Pulse 6.2 QCL | Pulse 5.2 QCL

< 1 second of time in total
Field Testing at Yuma Proving Ground

- Effects of temperature, sunlight, humidity, dust
- TNT, RDX, PETN, C4, Tetryl, Comp B, PBX4, PE4
- Best data at 10 meter
- Data out to 30 meter
 - difficult to stabilize optics
- Camera and single channel
- Very challenging environment
 - For electronics, optics, people

Sample: RDX
Stand-off distance: 10m
T_{amb.} = 22 °C
RH = 13%
V_{wind} = 10 mph

IR image

Differential images

- λ = 0.65µm (off res.)
 - Δ = -0.04 counts
- λ = 7.4µm (on res.)
 - Δ = 1.28 counts
- λ = 6.3µm (on res.)
 - Δ = 1.02 counts
- λ = 5.2µm (off res.)
 - Δ = -0.09 counts

RDX detected at 10 meter stand-off
Conclusions

- **Eye-safe** IR lasers have been utilized to selectively heat trace amounts of explosives to for photothermal imaging analysis.
- In photothermal detection applications (RED) a miniature IR quantum cascade laser (QCL) and thermal imaging detector have been used to detect and map trace explosives in a stand-off configuration.
- RED concept has been demonstrated on variety of substrates, analytes, in/out doors, and at significant standoff distances.
- Sponsored by OSD/RRTO and NRL
Air Infrared Transmission

- The fortuitous air window for explosives between 6 and 6.5 microns is away from night vision and missile heat seeking wavelengths
- We need to detect in LWIR because explosives are not “black bodies”
- Kirchhoff’s Law – their emissivity matches their absorptivity

NRL/AdTech Optics QCL

- OEM/COTS c-mounted QCL from AdTech Optics
- Operates at room temperature and slightly above
- Temperature controlled for constant output \(\lambda \) and power
- >180 mW Continuous Wave (higher in pulsed mode)
Interferent/“confusant” Testing

- Broadband absorbers will heat independent of wavelength.
- Distinguish this “confusant” by difference of differences
- 1325 counts/19.5mW = 67.9 (\(\lambda = 1600 \text{ cm}^{-1}\))
- 766 counts/11mW = 69.6 (\(\lambda = 1625 \text{ cm}^{-1}\))
- “Difference” 67.9 – 69.6 ~ zero (not an “analyte of interest”)

Differential images of carbon black sample on a gold mirror

When scaled by input power, the difference between the images is @ = zero.

Therefore the sample is not an “analyte of interest”.

Kendziora et. al.
Naval Research Laboratory
Explosives Detection Workshop at the University of Rhode Island
9 October 2009