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HighlightsHighlights

• ARL has demonstrated the ability to detect and discriminate residue explosives on 
multiple substrates using LIBS at 50+ meters.

• This technology has been evaluated in the field 4 times, twice at YPG and twice at 
NTC.  The first test was in December 2004.

• There have been 5 different standoff LIBS systems built for ARL so far.

• With the advent of real-time signal processing (chemometrics), we are now able to 
analyze target materials within 1 second of firing the laser with the analysis results 
being presented in the form of a stoplight (red = threat detected). 

– See video of demo for real-time unknown powder analysis at 
http://www.arl.army.mil/www/default.cfm?Action=247&Page=462.

– Google “ARL LIBS demonstration”

• Besides explosives, LIBS can be used to identify other materials associated with the 
threats, including metals, plastics, foams, and precursor chemicals.

• ARL has published 13 peer-reviewed scientific articles on residue explosives 
analysis.  8 of these include standoff analyses.
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IntroductionIntroduction

sample is ablated by pulsed laser beam with 
sufficient energy to excite/ionize the
material=breakdown threshold

typically peak power energies of 10-100 mJ/pulse 
are focused to an intensity of 1010-1012 W/cm2

Nd:YAG laser 
(1064 nm, 8 ns)

spectrometer

Laser-Induced 
Breakdown 

Spectroscopy
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Advantages of LIBS for Explosive 
Residue Detection

Advantages of LIBS for Explosive 
Residue Detection

• Real-time, true standoff detection capability
– conventional nanosecond LIBS has been demonstrated at distances 

>100 meters 

• Does not rely on vapor detection
– at room temperature, the vapor pressures of many common explosives 

are ppbv or less
– surface sampling is an important pathway for explosive device detection 

since explosive materials strongly adhere to surfaces

• No sample preparation required, single-shot analysis of residues 
possible

• LIBS provides all-in-one, universal hazardous materials detection 
(explosives, chemical, biological, radiological, TICs, TIMs).
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LIBS Sensor Suite & ApplicationsLIBS Sensor Suite & Applications

LIBS Probe for 
Humanitarian 

Demining

THREAT
DETECTED

Standoff detection

MP-LIBS

Remote/Fiber-
Optic LIBS

Underwater

Navy Ships- 300 m standoff

Suitcase LIBS 
“Lab-in-Field”

Robo-LIBS
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ARL Standoff System DevelopmentARL Standoff System Development

Dec 2004: Initial 
proof of principle 
test at YPG

Nov 2005: 1st standoff 
system built for ARL

Feb 2006: 2nd standoff 
system: Larger telescope, 
better lasers, broadband

Nov/Dec 2007: 
4th standoff system 
designed for field tests
performed by A3 Dec 2007: 1st field test at NTC

May 2008: 2nd field test at NTC

Jul/Aug 2008: 2nd field test 
at YPG

Oct 2009: 5th

standoff system 
installed

2005 2006 2007 2008 2009

Jul 2006: 3rd standoff 
system delivered (1.54 µm)
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Explosive Residue PreparationExplosive Residue Preparation

• Sample preparation methods
– Crush and smear ~1 mg onto substrate, or
– Apply to fingertips, then touch substrates (transfer small amounts onto 

surface), or
– Suspend in solvent (acetone/acetonitrile), apply small quantity to 

surface, solvent evaporates leaving ring of residue

• Recently acquired a Jet 
Lab 4 printer (Microfab)
– ink jet based sample deposition
– will allow quantitative sample 

preparation for limit of detection 
studies
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LIBS Spectra of ExplosivesLIBS Spectra of Explosives

Single-shot double pulse standoff spectra 
of explosive residues on aluminum
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Correlation between LIBS Emission 
and Stoichiometry

Correlation between LIBS Emission 
and Stoichiometry

• Collected LIBS spectra from a series of 13 
explosive and non-explosive organic 
compounds

• Range of stoichiometric ratios for C, H, N, 
and O

• Obtained atomic emission ratios (N/C, O/H, 
etc.) from LIBS spectra of each compound

• Atomic intensity intensities and ratios from 
LIBS spectra are strongly correlated to the 
chemical composition and stoichiometry

R2=0.9382

R2=0.9598

N
NN

N
N

NO2

NO2

N

N

N

NH2

NH2NH2

N N

N
NO2

NO2O2N

RDX 
C3H6N6O6

Melamine
C3H6N6

NTNAP
C3H6N7O4

UNCLASSIFIED

Chemometric AnalysisChemometric Analysis

• We compared several chemometric techniques for extracting 
information from the LIBS spectra, and found that PLS-DA provides 
the best discrimination

• Partial least squares discriminant analysis (PLS-DA)
– multivariate least squares discrimination method used to classify 

samples
– generates latent variables (LV) which maximize the separation between 

sample classes
– the input variables for a model for explosive detection consist of 9 

summed intensities and 20 ratios
• 37 relevant emission lines observed in the standoff LIBS spectra of explosive 

residues
• in addition to accurately tracking the stoichiometry, using ratios decreases 

the effect of shot-to-shot variations in laser energy, plasma temperature, 
material ablation, etc. 
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Residue DiscriminationResidue Discrimination

PLS-DA model with standoff LIBS data
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Explosive-containing MixturesExplosive-containing Mixtures
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Varying Standoff DistanceVarying Standoff Distance

• PLS-DA model constructed using 20 m data only
– 9 normalized intensities, 20 ratios

• Test samples: spectra from 30 m and 50 m
• Conclusion: we do not need to construct a model for every 

possible standoff distance
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Complex SubstratesComplex Substrates

65/70 true positives (92.9%)
5/180 false positives (2.8%)
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Automation SoftwareAutomation Software

• The MATLAB-based 
automation program 
continuously checks for 
new spectral files in the test 
directory

• New spectra are 
automatically tested against 
the PLS-DA model

• Near-instantaneous 
analysis (<1 sec)

• The results (red-hazardous, 
yellow-potentially 
hazardous, green-likely 
innocuous) are easily 
visualized by the end-user

• The threshold for 
red/yellow/green may be 
adjusted by the user (if 
enabled)

UNCLASSIFIED

Application: VBIED detectionApplication: VBIED detection

• Residue samples
– RDX, TNT, Comp-B, C4
– sand, Arizona road dust, house 

dust
– lubricant oil, fingerprint oil, diesel 

fuel
– RDX+oil, RDX+diesel fuel
– RDX+dust, RDX+sand
– RDX+oil+dust
– Oil+dust

• Car panel substrates
– 1998 black Ford pickup, 
– 1993 white Honda Accord EX, 
– 1993 teal Jetta, 
– 1991 metallic blue Toyota pickup, 
– 1987 dark green Mazda pickup, 
– 1986 silver Volvo 740 GL, 
– 1985 red Toyota pickup 

C

black car panel
RDX + black car panel

• Build Model:
– Consists of ratios from 500 LIBS 

spectra on 7 different car panel types)
– 1 explosive class, 6 non-explosive 

classes
• Test Set Results: 

– 95.4% detection rate (435/456 
explosives)

– 1.0% false positive rate (12/1145 non-
explosives)
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Continuing effortsContinuing efforts

• Sensitivity improvements
enhancement of analytical plasma via double pulse LIBS, plasma re-
heating (e.g. microwave cavity or CO2 laser), or resonance 
enhancement

• Selectivity Improvements
sensor fusion with orthogonal techniques such as Raman spectroscopy, 
LIF, photoacoustic spectroscopy, etc.

• Sample preparation for algorithm development and LOD 
determination needs to be addressed

methods such as spin coating and inkjet deposition being investigated
• Minimize substrate signal interference (substrate emission lines and 

matrix effects)
can be mitigated by proper design of PLS-DA model (or other 
chemometric technique)
can minimize substrate entrainment by using a very low energy laser 
pulse followed by enhancement of the analytical plasma
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Continuing effortsContinuing efforts

• Laser eye safety concerns
proper choice of laser wavelength and operational procedures 
(CONOPS) will minimize the risk of eye or skin damage to personnel



10

UNCLASSIFIED

Continuing effortsContinuing efforts

• Relatively high cost of standoff instrumentation (compared to non-
laser-based explosive detectors)

offset by potential for universal hazardous material identification 
(CBRNE)

not limited to specific classes of explosives (military-grade, HMEs, etc.)
can also identify otherwise innocuous materials that might indicate the 
presence of a hidden explosive device (e.g. painted foam rock)

• Commercially available, ruggedized hardware needed
more rugged solid-state lasers and compact, sensitive spectrometers 
under development

 CBE Model Identification 
Test Sample Explosive Nerve agent sim. Anthrax surrogate lubricant oil coffee/cocoa fertilizer 
Composition-B 100% 0% 0% 0% 0% 0% 
TEP 0% 100% 0% 0% 0% 0% 
BG (Al) 0% 0% 100% 0% 0% 0% 
diesel fuel 0% 0% 0% 92% 0% 0% 
fertilizer (aq) 0% 0% 2% 0% 8% 90% 
tea 0% 0% 0% 0% 88% 80% 
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New ThrustsNew Thrusts

• New capabilities at ARL:
– outdoor standoff range with 200+ meters distance

• 5th generation standoff system testing
– indoor standoff range with 70 meter distance

• enclosed, temperature-controlled laser laboratory dedicated to LIBS

• Development of LIBS payloads on robotic platforms
– e.g. robots with 1-meter standoff capability will require much smaller 

lasers and collection optics
– greatly reduced size, weight, and cost but capable of remote analysis
– improved eye safety profile

• Portable and rugged LIBS systems are being developed for field 
forensic uses
– LIBS has been shown to match materials to their sources:

• place of manufacture, country of origin, specific mine or geological location
• e.g. ARL has demonstrated with landmines and various gems & geomaterials

– chemometrics combined with trace element detection
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Example of Emerging Portable LIBS 
Technology for Detection of Hazards in the Field

• New Portable LIBSCAN-P 
Battery Powered System for 
Real-Time Analysis of Materials 
in the Field.  System is capable 
of rapid raster scanning of 
samples being analyzed.

- Mode 1: Basic system for 
smaller samples, e.g. swipe 
coupons (enclosed, eye-safe)

- Mode 2: Uses larger sample 
chamber for analysis of larger 
objects (enclosed, eye-safe)

- Mode 3: Detach laser head to 
analyze even larger objects 
(requires use of laser goggles)

Mode 1

Mode 2

Larger 
sample 
chamber

Display (hazard 
detected)

Power supply, 
battery, 
broadband 
spectrometer

Smaller 
sample 
chamber

Laser head
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