Contact Information Jimmie Oxley Chemistry Department University of Rhode Island Kingston, RI 02881 joxley@chm.uri.edu

Field Instrumentation & Testing

This course will include both lecture and field demonstrations. The lecture will present principles and strategies for the implementation of three classes of diagnostics: a) high speed photography b) dynamic blast pressure measurements; and c) photon Doppler velocimetry (PDV). The field demonstration will employ the three techniques in two explosive tests. A brief analysis of all diagnostic records will be performed for comparison between the two results.

- I. Introduction: High explosive test facilities employ
- II. Time Scale
- III. Explosive Devices designed for diagnostics
 - a. Machining tolerances
 - b. Reflective surfaces
 - c. Angle of approach
- IV. High-Speed Photography
 - a. Cameras
 - i. Hardware
 - ii. Software
 - iii. Timing
 - iv. Triggering
 - b. Lighting
 - i. Intensity
 - ii. Timing/interfacing
 - c. Handshaking
 - i. Signal Delay Generator
 - ii. Home-brew
 - d. Analysis

V.

- Blast Pressure Gauges
- a. Blast wave intro
- b. Measurement strategies
 - i. Side-on
 - ii. Stagnation
- c. Types
 - i. Piezoelectric
 - ii. Piezoresistive
 - iii. Passive (intentional and unintentional)
- d. Hardware
- e. Measurement (ADC strategies)
- f. Mounting, layout, and cabling strategies
- g. Analysis
 - i. Data processing
 - 1. Conversion from voltage to pressure

- 2. Peak picking and integration
- 3. Orthogonality
- ii. TNT equivalence
 - 1. Scaled distance
 - 2. Atmospheric scaling
 - 3. Different models
 - a. Kinney and Graham
 - b. BEC
 - c. Others
 - 4. Damage thresholds
- VI. Photon Doppler Velocimetry
 - a. Interference velocimetry introduction
 - i. Doppler effect
 - ii. Typical applications
 - b. Hardware
 - i. Laser
 - ii. Fiber Components
 - iii. Probe
 - iv. Amplifier
 - v. Detector
 - vi. Digitizer
 - vii. Kits
 - c. Up-shifting or down-shifting
 - d. Mounting, fixture, layout, and cabling strategies
 - e. Triggering and handshaking
 - f. Data analysis
 - i. Analysis tools
 - 1. MatLab
 - 2. Python
 - ii. Time-Frequency transformation
 - 1. Strategies and implementations
 - 2. Time-Frequency resolution, choosing parameters, and experimental constraints
 - iii. Peak picking and data fitting
 - iv. Interpretation of signals
 - 1. Gurney analysis
 - 2. Cylinder wall expansion
 - 3. Projectile velocity
 - g. Other uses for PDV
 - i. Waveform analysis
 - ii. Embedded fibers for continuous detonation velocity
 - iii. Initiation sequence analysis
- VII. Proposed Experiments
 - a. Two charges, one flake TNT, one c4, at the 100g scale in 1" nom cylindrical tube
 - b. Both charges fitted with an aluminum (0.125" thick x 1" diam) disc at charge end.
 - c. High Speed Photography records
 - i. SIMD16/Kirana: To measure detonation velocity
 - ii. Phantom cameras: To observe damage record of an object placed in view
 - d. Blast Pressure measurements collected to compare TNT equivalence between charges
 - e. PDV record used for Gurney analysis of flyer disc velocity. Gurney energy obtained.